Skip to content

Prof. Michiel Dusselier KULeuven to give a seminar on “Zeolite synthesis for bioplastics production and hydrocarbon conversions”

February 8, 2018

February 26, 11.00 (MERC14): Please join us at the next seminar of our group, for which the invited speaker is Michiel Dusselier (KULeuven).

Michiel comes from the group of Bert Sels and he is now an independant professor at the KULeuven, with a strong focus on zeolite synthesis and biomass valorisation. His talk will give us the opportunity to discuss some of the most recent progress and discoveries that he and his group have come up with in the recent years, in particular on the catalytic and green synthesis of bio-based monomers for the production of bioplastics (for example: Dusselier et al. Science 2015).

See you there!



Zeolites are well-known and durable catalysts in petrochemical and refinery operations. In the catalytic conversion of bio-derived molecules, or the conversion of (natural) gas, these microporous materials have a role to play as well.[1] Two topics will be discussed to demonstrate the importance of adapting zeolite technology (incl. synthesis) to the development of sustainable processes. The first will be in the context of bioplastics.[2] The synthesis route from sugars to certain polyester plastics is inefficient and I will demonstrate how (petrochemical) zeolite concepts can be successfully introduced to overcome some of the barriers in this field (BEA).[3] In the second part, the focus will be put on the synthesis of zeolites itself,[4] this time in the context of the methanol-to-olefins reaction (MTO). This reaction, known since the 1980s, is getting industrially implemented at high speed. The commercial catalyst is a silicoaluminophosphate, but small-pore aluminosilicates (e.g. SSZ-39, AEI) could become significant competitors, especially when considering that such zeolites are being commercialized for the selective catalytic reduction of NOx in exhaust gas.[5] In general, smallpore zeolite are increasingly in the spotlight and an overview of their synthesis and catalytic chemistry will be given. Finally, it will be shown how studying the synthesis of AEI led to the discovery of a new route to the elusive GME zeolite. The new material, CIT-9, is fault-free and its synthesis presents a truly unique case of conditional and isomeric cis/trans sensitivity related to the organic structure directing agent.[6]

[1] P. A. Jacobs, M. Dusselier, B. F. Sels, Angew. Chem. Int. Ed. 2014, 53, 8621-8626.
[2] M. Dusselier, P. Van Wouwe, A. Dewaele, E. Makshina, B. F. Sels, Energy Environ. Sci. 2013, 6,
[3] M. Dusselier, P. Van Wouwe, A. Dewaele, P. A. Jacobs, B. F. Sels, Science 2015, 349, 78-80.
[4] M. Dusselier, J. E. Schmidt, R. Moulton, B. Haymore, M. Hellums, M. E. Davis, Chem. Mater. 2015,
27, 2695-2702.
[5] M. Dusselier, M. A. Deimund, J. E. Schmidt, M. E. Davis, ACS Catal. 2015, 5, 6078-6085.
[6] M. Dusselier, J.-H. Kang, D. Xie, M. E. Davis, Angew. Chem. Int. Ed. 2017, 56, 13475-13478

From → Uncategorized

Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: