Skip to content

Conférence en vidéo: Préparation de catalyseurs hétérogènes à porosité contrôlée par le procédé aérosol

Le 22 février dernier, à l’invitation de Clément Sanchez, j’ai donné une conférence au Collège de France. Mon intervention s’inscrivait dans le cadre d’un colloque sur les matériaux poreux. Une belle occasion de partager ce que nous développons dans ce domaine, pour la préparation de catalyseurs hétérogènes, avec un focus sur le procédé aérosol.

Damien Debecker (UCLouvain), 22 février 2019, Collège de France, colloque “Synthèse, Propriétés, Applications des Matériaux Poreux : des nanopores aux macropores” organisé par le professeur Clément Sanchez (Collège de France). Plus d’informations: www.college-de-france.fr

Les procédés aérosol sont connus et implémentés depuis plusieurs décennies pour l’obtention de matériaux divisés aux propriétés variées. Les caractéristiques techniques des procédés aérosol rendent ces méthodes attractives pour la production de matériaux et nanomatériaux en mode continu, à large échelle et à façon. La versatilité de ce mode de production est spécialement intéressante dans le domaine de la catalyse hétérogène, où le contrôle fin des propriétés texturales, structurales et chimiques est essentiel. Nous l’avons utilisé pour préparer des catalyseurs aux propriétés basiques exacerbées, intéressants en chimie verte pour la synthèse du carbonate de glycérol. Nous l’avons également implémenté pour la préparation de catalyseurs structuré pour l’abattement des suies dans les échappement des moteurs diesel.

Les caractéristiques techniques des procédés aérosol permettent la production de catalyseurs hétérogènes performants, en mode continu, à grande échelle. Voir notre revue de la littérature dans Chem. Soc. Rev. 2018.

En particulier, la méthode “aerosol-assisted sol-gel” (AASG) a permis le développement de formulations catalytiques à hautes performances dans une série d’applications. La méthode est basée sur la chimie sol-gel classique, mais réalisée en un temps très court, durant le séchage des gouttelettes d’aérosol, souvent en présence d’agents texturants sacrificiels. Elle aboutit à la formation de particules microniques ou submicroniques, inorganiques ou hybrides, avec un excellent contrôle à la fois sur l’homogénéité et sur la texture (porosité calibrée, potentiellement multi-échelle, et adaptable). Dans la vidéo je passe en revue une série d’exemples de systèmes catalytiques obtenus par le procédés sol-gel couplé à l’aérosol, qui ont montré des performances intéressantes dans diverses réactions d’intérêt : métathèse des oléfines, méthanation du CO2, synthèse du lactate d’éthyle, époxydation des oléfines. J’expose aussi la conception de catalyseurs bi-fonctionnels combinant à la fois la fonction catalytique inorganique d’une zéolite microporeuse et la fonction biologique d’une enzyme.

Catalyseur Ti–SiO2 à porosité hiérarchisée, avec une grande dispersion du Ti et une haute activité pour l’époxydation des oléfines. Voir Chem. Mater. 2019.
Advertisements

Weiyi Ouyang joins our group as a postdoctoral fellow


The group was recently reinforced with the arrival of Weiyi Ouyang, who will bring his expertise in the catalytic upgrading of biomass and in MOF synthesis.

Weiyi did his PhD with Prof. Rafael Luque as a supervisor (NANOVAL, University of Cordoba, Spain) while he was also a Marie Curie early stage researcher in the Photo4Future project.

Weiyi is very experienced in preparing and characterizing various nanomaterials, such as metal oxide nanocomposites, porous aluminosilicate (SBA-15), metal organic frameworks, etc. Moreover, he is also good at investigating their catalytic performance in valorization of biomass derived platform molecules. He is currently hired on the ARC project aiming at investigating the effect of hydrophilicity and hydrophobicity of the catalysts on their catalytic performance.

Follow him on Twitter! (@OuyangWeiyi)

6th International Conference on Multifunctional, Hybrid and Nanomaterials: presenting our results on the stability of hydrophobic metallosilicates

Ales Styskalik is at the “HYMA Conference” in Sitges (Spain) to present an oral communication: «Ethanol dehydration over hydrophobic aluminum and niobium silicates: Influence of homogeneity of metal mixing on catalytic activity and stability of Si−C bonds». Here is his story, in brief.

Ethylene is widely used in chemical industry, mainly in polymer production. Nowadays it is being produced by petrochemical industry. (Bio)ethanol dehydration to (bio)ethylene is an interesting process that can become a competitive alternative to oil based production of ethylene, however catalysts for this reaction suffer from low activity and hydrothermal stability. Our intention was to improve their performance by increase of hydrophobicity. For this reason organic groups were introduced into the metallosilicate catalysts. To prepare these hybrids, we exploit the power of non-hydrolytic sol-gel chemistry.

From the very beginning we were facing serious issues with hydrothermal stability especially for materials containig aromatic groups connected via a direct Si−Caromatic bond. That was surprising because hybrid silica materials were proved to feature high stability against hydrolysis: while hydrolysis in hydrophobic silica occured at 400 °C, we have observed an extensive damage to metallosilicates already at 200 °C. We have shown that the instability is brought by introduction of partial charges to silica network due to differences in electronegativity between Si and the metal atoms incorporated. The more homogeneously were metals and thus partial charges distributed within the network, the lower was the catalyst stability. This stability issue was solved by incorporation of organic groups using precursors with stable Si−Caliphatic bonds (Figure). These are hydrothermally stable up to 350 °C. Aromatic groups can be maintained when using xylylene bridges.

Simply Complex: Precisely Manufactured Simple Molecules for Today’s Applications

On November 30, Dr. Rob Hart, head of R&D from The Shepherd Chemical Company (Cincinnati, USA) is invited to present a seminar at our Institute.

“It turns out that you can teach an old dog new tricks”.

Rob Hart, 2018

You are all invited to attend and discover how the chemistry and manufacture of simple molecules like basic copper nitrate, cobalt neodecanoate, zinc octoate and chromium acetate is in fact complex and interesting. Advanced characterization techniques, precise chemical engineering and strategic partnerships create opportunities for these types of materials to play a prominent role in technologies that impact us every day. 

Rob Hart is the Head of R&D from The Shepherd Chemical Company . He obtained his bachelor’s degree from University of Wisconsin and his Ph.D.from Indiana University where he worked with Prof. Josef Zwanziger on ceramic glasses. After graduation, he did a post-doc at Argonne National Lab where he worked with Chris Benmore, Ph.D. on characterizing optics, glasses, refractories, molecular liquids, etc. with neutron and x-rays cattering. Rob joined Shepherd Chemical in 2005 and has served numerous roles in the company from chemist and characterization lab manager to production manager and now Head of R&D.

Looking forward to meeting you all there!

Damien


Funded post-doc position: “QCM and AFM investigation of heterogeneous catalytic systems”

We are looking for a highly motivated post-doctoral researcher with a background in the investigation of heterogeneous catalytic systems on thin films.

The overall objective of the project is to study the hydrophobic/hydrophilic balance of the catalysts. The strategy outlining the post-doc research is to address these aspects by (i) preparing thin films of different catalytic solids, (ii) characterizing them by diverse micro- and spectroscopies, including AFM, (iii) performing QCM measurements to probe their adsorption/desorption behavior.

Detailed information and instructions for application can be found here.

DD

“La chimie des matériaux hybrides et leurs applications” – Prof. Clément Sanchez (15 mai):

L’association des diplômés de la Faculté des Bioingénieurs, en partenariat avec la Fondation Francqui et l’UCL a le plaisir de vous inviter à la leçon du Prof. Clément Sanchez, le 15 mai prochain à 18h30 au SUD19. Il y sera question de chimie des matériaux hybrides. De quoi aiguiser la curiosité des des plus chimistes d’entre nous… Mais pas que!

Cette conférence est organisée dans le cadre de la chaire “International Francqui Professor” qui nous permet d’accueillir le Prof. Sanchez en Belgique pendant 6 mois.

Clément Sanchez est un pionnier de la chimie des matériaux hybrides, et ses contributions exceptionnelles ont ouvert des perspectives d’applications dans les domaines des céramiques, des vecteurs thérapeutiques intelligents, de la catalyse, des batteries, des cellules photovoltaïques, des polymères, des capteurs, des matériaux biomimétiques, etc. Par « hybride », on entend des matériaux qui contiennent à la fois une composante inorganique et une composante organique. La chimie proposée est généralement basée sur une approche « bottom up » (donc en construisant le matériau brique par brique), en conditions relativement douces (donc potentiellement plus verte). La possibilité d’hybrider des composantes inorganique et organique dans les matériaux ouvre la voie vers une multitude de propriétés et d’applications. Par exemple combiner la rigidité du matériau inorganique avec la compatibilité biologique du matériau organique pour faire des implants.

La conférence est gratuite et ouverte à tous!

Dr. Francesca Paradisi to give a seminar on “Flow biocatalysis” (April 12)

April 12, 14.30 (LAVOB205): please join us for the seminar of our group for which the speaker is Dr. Francesca Paradisi (University of Nottigham).

Francesca Paradisi is an Associate Professor in Biocatalysis and Enzyme Engineering in the School of Chemistry at the University of Nottingham. She is very active in biocatalysis, especially focusing on the design of efficient biocatalytic processes in flow mode. Her technology opens up the way to greener chemical processes. Please check her recent review in Trends in Biotechnology. One of her recent focus is on biocatalytic transamination reactions in flow mode, using the enhanced stability and broad substrate scope of an immobilised transaminase from Halomonas elongata. We are excited to hear about this because it resonnates with our own work on flow reactors for enantioselective transamination reactions.

Here is the abstract of the her lecture:

Flow chemistry has allowed many industrial processes to be carried out in continuous mode, with higher efficiency and automation. Biocatalysis has caught up with this technique and several examples have been reported in the literature in the last decade. However, the complexity of multi-enzymatic processes in the absence of cellular regulation, has limited their applications to some chemo-enzymatic synthesis, and just a few fully enzymatic processes have been implemented. Among others, the cofactor requirements of redox enzymes, the stability of the biocatalyst, and efficiency of the biotransformations, must be thoroughly optimised. Furthermore, the mobile phase is rarely recovered, minimizing the real environmental impact of enzymatic reactions. Here I will present our journey with flow biocatalysis, moving to systems of increasing complexity with combinations of several enzymes, which has resulted as a breakthrough in the design implementation of an ultra-efficient zero-waste and closed-loop process with unprecedented atom efficiency and automation.

See you then!

DD

%d bloggers like this: